Solving Robot Motion Planning Problem Using Hopfield Neural Network In A Fuzzified Environment
نویسندگان
چکیده
In this paper, a new approach based on Artificial Neural Networks to solve the robot motion planning problem is presented. For this purpose, a Hopfield Neural Network is used in a certain constraint satisfaction problem of the robot motion planning in conjunction with fuzzy modeling of the real robot’s environment so that the energy of a state can be interpreted as the extent to which a hypothesis fit the underlying neural formulation model. Thus, low energy values indicate a good level of constraint satisfaction of the problem. Finally, since the obtained answer by the Hopfield Neural Network is not optimal, some algorithms are designed to optimize and generate the final answer.
منابع مشابه
Motion detection by a moving observer using Kalman filter and neural network in soccer robot
In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...
متن کاملNeural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree
In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کاملA Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملObstacle Avoidance Using Modified Hopfield Neural Network for Multiple Robots
In this paper, dynamic path planning of two mobile robots using a modified Hopfield neural network is studied. An area which excludes obstacles and allows gradually changing of activation level of neurons is derived in each step. Next moving step can be determined by searching the next highest activated neuron. By learning repeatedly, the steps will be generated from starting to goal points. A ...
متن کامل